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a b s t r a c t

Using the simple measurement of the attitude of planar features such as foliation, shear planes and
displaced tabular markers (such as veins or dykes), fundamental information is obtained on deformation
types and rheology in heterogeneous ductile shear zones. The method outlined in this study is based on
the subdivision of the shear zone in n deformed layers, each of them being characterized by approxi-
mately homogenous deformation. For each layer, paired measurements of q0 and G are made, where q0 is
the angle that the foliation forms with the shear plane and G is the effective shear strain. By means of
suitable q0-G grids, constructed according to strain boundary conditions, values of stretch (k), shear strain
(g), strain ratio (R) and kinematic vorticity number (Wk) are calculated. The method has been tested on
three ductile wrench zones exposed in a deformed granitoid pluton in the Eastern Alps (Italy). The q0-G

data indicate that the shear zones are of dominantly transtensional or transpressional type. Furthermore,
the finite shear strain and strain ratio peaked profiles suggest that in all instances shear zone evolution
was characterized by strain softening. Analysis of the kinematic vorticity indicates that strain softening
essentially affected the simple shear component of the deformation.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Shear zones are very common structures in the lithosphere and
their study is fundamental for investigating heterogeneous rock
deformation and strain localization processes (e.g. Ramsay and
Graham, 1970; Ramsay, 1980; Ramsay and Huber, 1983, 1987). They
are the result of complex interactions between controlling factors
such as P-T conditions and fluid behaviour, and a series of param-
eters including: (i) partitioning of different deformation types
(simple shear, pure shear, volume change), (ii) deformation distri-
bution (i.e. degree of strain localization), and (iii) rheology
(involving strain softening or strain hardening). The heterogeneous
nature of the deformation in most natural shear zones is evident
from the variability of finite strain parameters such as strain ratio or
shear strain. The origin of strain heterogeneity depends on the
evolution of the active shear zone as a function of time (e.g. Means,
1995; Vitale and Mazzoli, 2008).

Most of the strain analysis methods applied to the study of shear
zones involve the determination of finite strain ratios, together
with the measurement of foliation and shear plane attitudes (q0-R
plot; Fossen and Tikoff, 1993; Vitale and Mazzoli, 2008, 2009).
ax: þ39 (0) 812538338.
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However, the results provided by these techniques often bear large
uncertainties because of the difficulties in estimating precisely the
finite strain by means of suitable strain markers (such as spherical
or ellipsoidal deformed objects). The largest uncertainties are due
to the variability of parameters such as object concentration (i.e. the
concentration of more competent strain markers embedded in
a less competent matrix), viscosity contrast, and object shape (e.g.
Treagus and Treagus, 2001; Vitale and Mazzoli, 2005). Furthermore,
the most popular methods of finite strain analysis (Fry and Rf/4
techniques; Ramsay, 1967; Fry, 1979; Lisle, 1985) require the
fulfilment of a number of assumptions, not always satisfied by
rocks. The aim of this paper is to provide an alternative and more
precise method for the quantitative analysis of natural shear zones.
The proposed method is based on the use of the effective shear
strain – rather than finite strain ratio – to characterize heteroge-
neous deformation in shear zones.
2. q0-G method

The method is based on the analysis of the attitudes of foliation,
shear plane and displaced planar markers (e.g. vein, dyke) across
the shear zone. Therefore, this technique requires the presence of
a well-developed foliation and of a planar marker being intersected
by the shear zone (Fig. 1).
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Fig. 1. (a) 3D shear zone model showing the geometric relationship between a deformed planar marker and oblique foliation. The reference frame (x, y, z) used in this study and
a schematic orientation of the finite strain ellipsoid (with principal axes: X, Y, Z) are also shown. (b) Shear zone section parallel to the slip vector (xy plane) showing the subdivision
into approximately (at the scale of observation) homogeneously deformed layers and the three angles described in the text.
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In this study, the shear zone reference frame (Fig. 1a) is indicated
by means of lowercase letters (x, y, z, where the x axis is parallel to
the shear direction and the xz plane is parallel to the shear plane, this
being vertical for the analyzed wrench-type shear zones), whereas
capital letters (X, Y, Z) are used for the orientation of the principal
axes of the finite strain ellipsoid (with the X axis parallel to the
maximum extension direction and the Z axis parallel to the
minimum one; e.g. Ramsay and Huber,1983). The analyzed foliation
is assumed to be parallel to the XY plane of the finite strain ellipsoid.

In order to evaluate the effective shear strain G (sensu Fossen
and Tikoff, 1993), the cotangent rule is applied to the displaced
planar marker (Eq. 2.3, pg. 24 of Ramsay and Huber, 1983):

G ¼ cotða0Þ � cotðaÞ (1)

where a and a0 are the angles between the planar marker and the
shear plane in the undeformed host rock and inside the shear zone,
respectively (Fig. 1b). In order to collect q0-G data, where q0 is the
angle that the foliation forms with the shear plane (Fig. 1b), the
heterogeneous ductile shear zone (in this study being of wrench
type) is divided into sectors characterized by monotonously
increasing or decreasing strain. Each sector, in turn, is divided into n
suitable layers parallel to the shear plane and characterized by an
approximately homogeneous deformation (in others words the
finite strain, resulting from a combination of simple shear, pure
shear and volume change, is considered as being homogeneous
within each layer volume; however, all together the layers define
a heterogeneous deformation in which finite strain parameters
such as shear strain and stretch values are spatially variable across
the shear zone). The thickness of each layer (i.e. the sampling size)
notably influences the accuracy of the measurements. Although
closer sampling obviously furnishes more precise estimates (the
strain within each layer being closer to homogeneous), also
choosing layers of constant or variable thickness influences
measurement uncertainty. Taking into account that finite strain
generally increases in a non-linear fashion from the margins to the
centre of a heterogeneous ductile shear zone, logarithmically-
spaced sampling is adopted in this study in order to obtain a more
homogenous distribution of measurement precision across the
shear zone.
Let us assume, for each layer, a deformation characterized by
simultaneous simple shear, pure shear and volume change. For the i-th
layer, the finite strain matrix is in the form (Tikoff and Fossen, 1993):

AðiÞ ¼

2
4 k1ðiÞ GðiÞ 0

0 k2ðiÞ 0
0 0 k3ðiÞ

3
5 (2)

where GðiÞ ¼ gðiÞðk1ðiÞ � k2ðiÞÞ=lnðk1ðiÞ=k2ðiÞÞ is the i-th finite
effective shear strain (i.e. the off-diagonal term of the strain
matrix), k1(i) ¼ (1 þ e1(i)), k2(i) ¼ (1 þ e2(i)) and k3(i) ¼ (1 þ e3(i))
are the i-th finite stretches, and e1(i), e2(i) and e3(i) are the i-th finite
extensions.

Strike-slip deformations may deviate from simple shear because
of a component of shortening or extension orthogonal to the
deformation zone, determining conditions of transpression or
transtension, respectively (sensu Dewey et al., 1998). Two cases of
transpressional/transtensional wrench zones have been considered
in this study:

(a) simple shear in the xy plane and synchronous pure shear in the
yz plane (i.e. k1 ¼ 1 and k3 ¼ k2

�1), represented by the strain
matrix (Fossen and Tikoff, 1993):

A1 ¼

2
64

1 g ð1�k2Þ
lnð1=k2Þ 0

0 k2 0
0 0 1=k2

3
75 (3)

(b) simple shear and synchronous pure shear, both in the xy plane
(i.e. k3 ¼ 1 and k1 ¼ k2

�1), represented by the strain matrix:

A2 ¼

2
64

1=k2 gð1=k2�k2Þ
lnð1=k2

2Þ
0

0 k2 0
0 0 1

3
75 (4)
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In cases where pure shear is localized within the shear zone only
(i.e. it does not involve the host rock), vertical or horizontal
stretching occurs for cases (a) and (b) above, respectively (Sand-
erson and Marchini, 1984; Jones et al., 1997; Dewey et al., 1998).

Grids for plotting the q0-G data (Fig. 2) may be constructed by
allowing the values of k2 and g vary in the following equations
(Fossen and Tikoff, 1993; Tikoff and Fossen, 1993):

G ¼ gðk1 � k2Þ
lnðk1

k2

� (5)

q0 ¼ arctan
�
� G2 þ k2 � lmax

k2G

�
(6)

where lmax is the maximum one among the three eigenvalues of
the matrix A1A1

T (i.e. the lengths of the finite strain ellipsoid axes):

l1;2;3 ¼

8>>>>>><
>>>>>>:

1
2

�
G2 þ 1þ k2

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k2

2 þ
�

G2 þ 1þ k2
2

�2
r �

1
2

�
G2 þ 1þ k2

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k2

2 þ
�

G2 þ 1þ k2
2

�2
r �

k�2
2

9>>>>>>=
>>>>>>;

(7)

and the matrix A2A2
T:

l1;2;3 ¼

8>>>>><
>>>>>:

1
2

�
G2 þ k�2

2 þ k2
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ

�
G2 þ k�2

2 þ k2
2

�2
r �

1
2

�
G2 þ k�2

2 þ k2
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ

�
G2 þ k�2

2 þ k2
2

�2
r �

1

9>>>>>=
>>>>>;

(8)

In order to obtain the mathematical value of the stretch k2 from
the G-q0 data for transpressional/transtensional wrench zones in
the case (a) above, the lmax value (in this case being l1) in Eq. (7) is
replaced with that obtained from Eq. (6). Then, using the equation:

2
�

G2 þ 1þ k2 tan q0
�
�
�

G2 þ 1þ k2
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k2

2 þ
�

G2 þ 1þ k2
2

�2
r �

¼ 0

having a solution:
Fig. 2. Examples of q0-G grids for transpressional/transtensi
k2 ¼
�GþG tanq0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2þ2G2 tan2 4q0 þG2 tan4 q0 þ4G2 tan2 q0

q
2tan q0

(10)

shear strain values can be obtained by means of Eq. (5).
In a general case, where it is difficult to find a resolvable equa-

tion, it is possible to graphically obtain values of stretch (k) and
shear strain (g) by means of a suitable q0-G grid, constructed
according to strain boundary conditions.
3. Application of the q0-G method: shear zones in the Neves
Lake area (Eastern Alps)

The study area (Fig. 3a) is that intensely investigated by Man-
cktelow and Pennacchioni (2005) and Pennacchioni and Man-
cktelow (2007), whose papers provide comprehensive and detailed
accounts of both regional geological setting and spectacular shear
zones exposed on a surface previously polished by a glacier. As
demonstrated by the latter Authors, the analyzed shear zones are
exposed in a low-strain domain of an elsewhere extensively
deformed and mylonitized, pre-Alpine intrusive granitoid body
included within the amphibolite facies ‘Zentralgneiss’ (Penninic
units exposed within the Tauern tectonic window, Eastern Alps).
Shear zone nucleation was controlled by the presence of precursor
joints, and occurred by a widespread reactivation process charac-
terizing solid-state deformation of granitoid plutons also elsewhere
(e.g. Pennacchioni, 2005; Mazzoli et al., 2009).

For this study, three shear zones have been selected. From the
least to the most evolved, they have been named: SZ1, SZ2, and SZ3.
The shear zones are characterized by a well-developed foliation and
by the presence of deformed quartz veins that are intersected by
the shear zones themselves (Fig. 3b–d). As demonstrated by Man-
cktelow and Pennacchioni (2005) and Pennacchioni and Man-
cktelow (2007) based on the detailed analysis of a large number of
structures, wrench zones are about vertical and are characterized
by sub-horizontal slip vectors and dextral sense of shear, with
deformation involving no volume variation. For the analyzed
structures, shear zone thickness ranges from 14 (SZ1) to 2.5 cm
(SZ3) and quartz vein thickness varies from 9 to 10 (SZ1, SZ2) to
about 1 cm (SZ3). SZ3 actually consists of two parallel, closely
spaced but distinct, ‘paired’ (Mancktelow and Pennacchioni, 2005)
shear zones (Fig. 3d). Roughly N-S striking quartz veins in the study
area may locally accommodate minor, vein-parallel sinistral shear
(Pennacchioni and Mancktelow, 2007). However, for the structures
onal wrench zones. (a) D ¼ 0, k1 ¼ 1. (b) D ¼ 0, k3 ¼ 1.



Fig. 3. Location of field study area and outcrop view of studied dextral ductile wrench zones deforming quartz veins. (a) Simplified geological map of part of the Eastern Alps,
showing site of structural analysis (star) NE of the Neves Lake (after Pennacchioni and Mancktelow, 2007). (b) Low-shear strain zone (SZ1), showing example of logarithmic-sized
sampling grid. (c) Moderate-shear strain zone (SZ2). (d) High-shear strain zone (SZ3).
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analyzed in this study (Fig. 3b–d) vein-parallel simple shear
appears to be negligible. Therefore, quartz veins are treated as
passive markers.

In order to collect q0-G data, the analyzed shear zones have been
divided into approximately homogeneously deformed, logarith-
mically-spaced parallel layers (see example in Fig. 3b). For each
shear zone, sets of measurements have been collected from two
transects located on the right-hand and left-hand sides of the
quartz vein deformed within the shear zone. The following
parameters have been recorded (by image analysis): (i) thickness
(T) of each layer; (ii) angle q0 that the foliation forms with the shear
plane; (iii) angle a0 that the quartz vein forms with the shear plane;
(iv) angle a between the shear plane and the vein outside the shear
zone. By means of these quantities, the i-th finite effective shear
strain G(i) may be obtained.

By using Eq. (1), the finite effective shear strain (G) has been
calculated and plotted versus shear zone thickness (T) for the three
analyzed structures (Fig. 4a, b, e, f, i, j). G-profiles display asym-
metric peaked shapes with a single maximum (occurring on both
sides of the quartz vein) for SZ1, one maximum (right side) and two
maxima (left side) for SZ2, and two maxima for SZ3 (both sides).

In order to obtain information on finite stretches and shear
strains, q0-G data have been plotted on a grid constructed for D ¼ 0
and for the two cases of k1 ¼ 1 or k3 ¼ 1 (Fig. 4c, d, g, h, k, l). It is
worth noting that, for both cases, most of SZ1-data fall in the
transtension field, with a strain path characterized by a decrease of
stretch as the shear strain increases, eventually entering the
transpression field (Fig. 4c–d). Also SZ2-data plot in both trans-
tension and transpression fields, with a trend similar to the
previous one, for both cases of k1 ¼ 1 or k3 ¼ 1 (Fig. 4g–h). On the
contrary, most of SZ3-data fall in the transpression field (Fig. 4k–l).
These data are also indicative of higher values of finite shear strain.

For each layer within the analyzed shear zones, values of stretch
(k2) and shear strain (g) have been obtained either by means of Eqs.
(7) and (3) (in the case of D ¼ 0 and k1 ¼ 1) or graphically (in the
case of D ¼ 0 and k3 ¼ 1).

In order to gain information on the partitioning between simple
and pure shear components of the finite strain, the kinematic
vorticity number (Wk) has been estimated by means of equation
(Tikoff and Fossen, 1993):

Wk ¼ cos
�

arctan
�

2lnðk2Þ
g

	

(11)

Profiles of finite shear strain (g), strain ratio (RXZ), stretch (k2)
and kinematic vorticity number (Wk) across the three studied shear
zones are displayed in Figs. 5(a–l) and 6(a–l) for the cases of D ¼ 0,
k1 ¼ 1, and D ¼ 0, k3 ¼ 1, respectively. Kinematic vorticity number
(Wk) is plotted versus finite shear strain (g) in the diagrams of Figs.
5(m–o) and 6(m–o).
4. Discussion

The three analyzed shear zones are characterized by heteroge-
neous finite strain, clearly marked by the peaked profiles of finite
effective shear strain (Fig. 4a, b, e, f, i, j), shear strain (Figs. 5a–c and
6a–c) and strain ratio (Figs. 5d–f and 6d–f). The analyzed structures
are characterized by different states of deformation, ranging from
weak (SZ1; Gmax ¼ 2), to moderate (SZ2; Gmax ¼ 17), to high (SZ3;
Gmax ¼ 50). The peaked strain profiles suggest that a strain



Fig. 4. Diagrams of finite effective shear strain (G) vs. shear zone thickness (T) (profiles located on both right-hand and left-hand sides of the quartz vein deformed within each
shear zone), and q0-G plots (constructed for the condition of D ¼ 0; see text). (a) Right-hand side of SZ1. (b) Left-hand side of SZ1. (c) q0-G plot for SZ1 in the case of k1 ¼1. (d) q0-G plot
for SZ1 in the case of k3 ¼ 1. (e) Right-hand side of SZ2. (f) Left-hand side of SZ2. (g) q0-G plot for SZ2 in the case k1 ¼1. (h) q0-G plot for SZ2 in the case of k3 ¼ 1. (i) Right-hand side of
SZ3. (j) Left-hand side of SZ3. (k) q0-G plot for SZ3 in the case of k1 ¼ 1. (l) q0-G plot for SZ3 in the case of k3 ¼ 1.
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softening rheology controls the temporal development of the
studied shear zones (Means, 1984, 1995; Vitale and Mazzoli, 2008).
In fact, strain softening allows the inner part of the shear zone to
accumulate more strain with respect to the margins that become
inactive with time. Strain softening implies variable shear strain
rates and/or longitudinal strain rates, meaning that deformation
was not of steady-state type.

Taking into account the available constraint on deformation
involving no volume change (Mancktelow and Pennacchioni, 2005;
Pennacchioni and Mancktelow, 2007), our analysis reveals that
deformation generally deviates from simple shear due to
a component of extension or shortening orthogonal to the analyzed
ductile wrench zones, determining conditions of transtension or
transpression. Two of the analyzed shear zones (SZ1 and SZ2) are
characterized by prevalent transtension (which however decreases
as the finite shear strain increases, eventually switching to trans-
pression; Fig. 4c, d, g, h), whereas SZ3 records dominant trans-
pressional deformation and higher values of finite shear strain
(Fig. 4k, l). All three cases are characterized by a variable compo-
nent of the intermediate finite stretch (k2) (Figs. 5g–i and 6g–i).



Fig. 5. Transpressional/transtensional wrench zones with pure shear in the yz plane (i.e. D ¼ 0, k1 ¼1). (a–c) Plots of finite shear strain (g) vs. shear zone thickness (T). (d–f) Plots of
finite strain ratio (RXZ) vs. shear zone thickness (T). (g–i) Plots of finite stretch (k2) vs. shear zone thickness (T). (j–l) Plots of kinematic vorticity number (Wk) vs. shear zone thickness
(T). (m–o) Plots of kinematic vorticity number (Wk) vs. finite shear strain (g). Symbols: solid lines and circles refer to the right-hand side of the deformed planar marker, dotted lines
and diamonds refer to left-hand side.
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However, deformation along the intermediate axis of the finite
strain ellipsoid tends to disappear (k2 ¼ 1) for high values of finite
shear strain.

The partitioning between simple shear and pure shear compo-
nents across the shear zones is recorded by the kinematic vorticity
number (Wk), which mainly ranges between 0.5 and 1 (Figs. 5j–l
and 6j–l). It is worth noting that plotting the kinematic vorticity
number against the finite shear strain (Figs. 5m–o and 6m–o)
indicates a negligible pure shear component of the deformation
(Wk z 1) for high values of shear strain.

In order to better emphasize the relationship between finite
shear strain, stretch (k2) and kinematic vorticity number, g-k2 data
for each shear zone have been plotted on a semi-logarithmic
diagram including Wk isolines (Fossen and Tikoff, 1993). The
diagrams (Fig. 7) are divided into three fields according to principal
finite strain ellipsoid axis orientation. For low values of finite shear
strain (g < 1.5), in both strain configurations (D ¼ 0, k1 ¼1, Fig. 7a;
and D ¼ 0, k3 ¼ 1, Fig. 7b) most of the data fall into the transtension
field, with the finite stretch (k2) value ranging between 1 and 5, and
kinematic vorticity number ranging between 0.4 and 1. In this case,
finite strain ellipsoids may be characterized by a vertical Z axis and
horizontal X and Y axes (i.e. horizontal foliation). Only a few data
plotting into the transpression field are characterized by a vertical X
axis and horizontal Y and Z axes. For high values of finite shear
strain (1.5 < g < 50), most of the data display a kinematic vorticity
number close to unity (Wk > 0.9), finite stretch (k2) values ranging
between 0.6 and 2, and finite strain ellipsoids both in the trans-
tensional and transpressional field, with a vertical Y axis and
horizontal X and Z axes (i.e. vertical foliation). All these features
corroborate the hypothesis that the heterogeneous strain observed
in these transtensional/transpressional shear zones is probably the
result of a strain softening process that affected the simple shear
component only, whereas the pure shear component of the defor-
mation becomes more and more negligible from the margins to the
centre of the wrench zone.

Finite strain ratios have been plotted in Ramsay’s (1967) loga-
rithmic diagram (modification of the well known Flinn diagram;
Flinn, 1962) for finite strain ellipsoids classification, only in the case
of k1 ¼ 1 and k3 ¼ k2

�1, as deformation characterized by k3 ¼ 1 and
k1¼ k2

�1 is of plane strain type (non-coaxial plane strain sensu Jones
et al., 1997) and all the related ellipsoids would plot along the
diagram bisector. Finite strain ellipsoids determined for weakly to
moderately deformed rocks from prevalently transtensional shear
zones (SZ1 and SZ2) fall into the prolate field, whereas most of the
dominantly transpressional, high-strain shear zone (SZ3) finite
strain ellipsoids plot into the oblate sector (Fig. 8).

The transpressional character of SZ3 is probably related to
homogeneous deformation affecting both the host rock and the



Fig. 6. Transpressional/transtensional wrench zones with pure shear in the xz plane (i.e. D ¼ 0, k3 ¼ 1). (a–c) Plots of finite shear strain (g) vs. shear zone thickness (T). (d–f) Plots of
finite strain ratio (RXZ) vs. shear zone thickness (T). (g–i) Plots of finite stretch (k2) vs. shear zone thickness (T). (j–l) Plots of kinematic vorticity number (Wk) vs. shear zone thickness
(T). (m–o) Plots of kinematic vorticity number (Wk) vs. finite shear strain (g). Symbols: solid lines and circles refer to the right-hand side of the deformed planar marker, dotted lines
and diamonds refer to left-hand side.

Fig. 7. (a–b) Data from the analyzed shear zones plotted on the g-k2 diagram of Fossen and Tikoff (1993) for transpressional/transtensional wrench zone characterized by D ¼ 0,
k1 ¼ 1 (a), and D ¼ 0, k3 ¼ 1 (b). Symbols: circles, diamonds and triangles refer to SZ1, SZ2, and SZ3, respectively.
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shear zone, with roughly horizontal maximum shortening oriented
at a low angle to the vein plane in the host rock (Fig. 3d). As sug-
gested by Pennacchioni and Mancktelow (2007), this homogeneous
strain may be coeval with localized simple shear. In contrast, for
SZ1 and SZ2 no appreciable homogeneous strain can be observed in
the host rock (Fig. 3b, c); deformation within these shear zones
shows a transtensional character for low shear strain values,
moving toward the transpression field as shear strain increases
(Fig. 4c, d, g, h). Therefore, it appears that SZ1 and SZ2 are char-
acterized by localized, coupled simple shear and pure shear within
an essentially undeformed host rock, whereas SZ3 records a domi-
nant localization of the simple shear component within the context
of a bulk homogeneous deformation (Fig. 4k–l).

The method proposed in this study has been applied to wrench
zones characterized by no volume change. However, this technique
can be used for any strain configuration, such as those character-
izing thrust zones, as well as wrench zones (Fossen and Tikoff,
1993), and for any type of strain including a simultaneous combi-
nation of simple shear with a three-dimensional coaxial deforma-
tion involving apparent constriction (D > 0), apparent flattening
(D < 0), or pure shear with no volume change (Tikoff and Fossen,
1999). According to the specific boundary conditions, it is possible
to construct appropriate grids allowing one to obtain, graphically or
mathematically, the shear strain and stretches values. It should be
noted that, for most of the data, the Y axis of the finite strain
ellipsoid is vertical (Fig. 7), hence the XY plane – and the foliation
that is assumed to be parallel to it – are also vertical. Only for the
shear zone margins, where the shear strain is very low, the XY plane
may be horizontal, making hard to recognize the foliation and
increasing measurement uncertainties. On the other hand, where
the foliation is well developed – that is in the centre of the shear
zone – little variations of the angle q0 imply large variations of the
obtained values of stretch and shear strain (see the q0-G diagrams of
Fig. 4). Therefore, particular care has to be taken in the measure-
ment of the angle q0, especially for those shear zone sectors
recording lowest deformation, on one extreme, and highest
deformation on the other.
Fig. 8. Data from the analyzed shear zones plotted on the Ramsay diagram for finite
strain ellipsoid classification; transpressional/transtensional wrench zones are char-
acterized by D ¼ 0, k1 ¼ 1. Symbols: circles, diamonds and triangles refer to SZ1, SZ2,
and SZ3, respectively.
5. Conclusions

The method presented in this study delivers, in a relatively easy
and handy way, fundamental information on finite strain charac-
teristics in shear zones. The simple measurement of three angles
(q0, a0, and a) permits the calculation of the finite effective shear
strain (G), the construction of the q0-G plot (displaying the rela-
tionship between finite effective shear strain and the angle that the
foliation forms with the shear plane), and to obtain information on
finite values of stretch and shear strain. The only necessary
conditions required to apply this method are the occurrence of
a well-developed foliation and a deformed planar marker, and the
care to measure all structures parallel to the simple shear plane of
the coordinate frame defined in this study with reference to the
shear zone.

The proposed method has been applied to the study of three
ductile wrench zones exposed in deformed granitoid rocks of the
Eastern Alps, for which additional information about volume
change during deformation (D ¼ 0) were available (Mancktelow
and Pennacchioni, 2005; Pennacchioni and Mancktelow, 2007).
Assuming that these strike-slip shear zones may be characterized
by transpressional or transtensional deformation, the finite values
of stretch and shear strain have been determined across the shear
zones. The obtained gradients of finite strain parameters such as
stretch (k2), shear strain (g), strain ratio (RXZ), effective shear strain
(G), and kinematic vorticity number (Wk) provide all the informa-
tion needed to fully characterize the deformation. In our case, it is
possible to establish that the analyzed heterogeneous ductile shear
zones are characterized by dominant transtensional or transpres-
sional type of deformation. Analysis of the finite simple shear
component, which increases from the margins toward the centre of
the shear zones, suggests that strain softening processes signifi-
cantly affected the non-coaxial component of the deformation. On
the other hand, the finite pure shear component of the deformation
attains a variable intensity and tends to disappear for high values of
finite strain, high-strain shear zones being essentially characterized
by non-coaxial strain. Our results also suggest heterogeneous par-
titioning of the deformation in the rock: localization of both simple
shear and pure shear strain is recorded by two analyzed shear
zones (SZ1 and SZ2), whereas dominant localization of the simple
shear component occurred in the third, higher-strain shear zone
(SZ3) that evolved within the framework of a bulk coaxial strain
affecting the whole rock volume.
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